MV C Technical Documentation

MVC Labs

https://microvisionchain.com

2023 March

Version 1.1

V11

https://microvisionchain.com

Abstract

The major problem of the blockchain industry has always been the Scaling problem. Existing
blockchains proposed various innovative solutions with different technical routes in the past,
for example, the Sharding solution of Ethereum. Meanwhile, due to the high concurrency of
UTXO, some blockchains adopt the UTXO design to scale. Yet, the traditional UTXO model
is considered to lack Layer 1 smart contracts capabilities and cannot satisfy complex
business needs; it also lacks a decentralized identity protocol (DID) and data structure model
of Layer 1, making it challenging to build complex applications and achieve data
interoperability. Consequently, the traditional UTXO model blockchain cannot meet the
future needs of Web3 applications.

MVC is a revolutionary blockchain based on the UTXO model. It altered the Layer 1 TXID
generation method to improve the parallel performance significantly. It also innovatively
proposed the Layer-1 smart contract and DID on the UTXO model. Unlimited scaling can be
achieved with a high level of decentralization simultaneously. This document will
demonstrate MVC's concept, technical details, and mining mechanism, and explain why and
how MVC was the perfect blockchain for Web3.

Disclaimer

This white paper is a conceptual document illustrating the MVC's background, technical
principles, and essential related content. Any content in this white paper does not constitute
legal, financial, business, or taxation suggestions; please consult your law, finance, tax, or
other professional consultants if necessary.

Introduction

Why We Build MVC?

After 14 years of development, blockchain technology has showed its unique technical
advantages and the potential to change the society. However, the scaling problem has always
been the major showstopper to the blockchain industry. Scalability issues also bring a series
of problems, such as high fees, low performance, limited application scenarios, etc to the
existing blockchain. With the development of technology and people's expectation for the
future Metaverse, we need a new blockchain that can fundamentally solve this problem and
can support numerous Web3 applications in the future. MicroVisionChain (hereinafter
referred to as MVC) is the revolutionary blockchain that was born for Web3 with unlimited
scalability.

The Main Problems of Blockchain Technology Nowadays

e Scaling

The main problem of today's blockchain is scaling, prohibiting blockchain technology from
being widely utilized by billions of users. It is also the main obstacle to the vast adoption of
blockchain technology for society, causing the poor performance of most Web3 applications.

e High Transaction Fees

The transaction fee of traditional blockchains is generally high, which is a derivative problem
of the scaling. Some blockchain claim to be able to reduce the fees, but often at the expense
of anti-decentralization. The high fees had built a gap between blockchain applications and
massive user adoption.

e (Cross-chain Storage

To solve the high fees, low performance, and scaling problems in today's blockchain,
cross-chain storage solutions are proposed. However, cross-chain cause explicit concerns like
poor security and data isolation, leading to poor experience in usage and high development
cost.

Besides, existing blockchains are flawed in data interoperation, smart contracts performance,
and transaction confirmation time. MVC aims to propose innovative and practical solutions
to tackle these issues.

The MVC Solution

e High-level Decentralization

MVC adopts the same POW consensus solution and the same SHA256 mining algorithm as
Bitcoin to ensure that the MVC is open, permissionless, and decentralized. Decentralization
is the foundation of all blockchain technology that provides the health and scalability of the
system. It is also the boost of fair competition to bring the entire system continuously vibrant.

e High Performance

MVC has upgraded the transaction format of the UTXO model to create a high-performance
parallel computing supernode to ensure one million TPS. With an optimized UTXO model
that enables high concurrency of transaction confirmation, MVC will be the first scaling
blockchain used by global users.

e Built-in Distributed Identity Protocol

We invented the MetalD, a distributed identity protocol under the UTXO model to empower
discrete UTXO models with the advantages of the account model and high concurrency. Each
piece of data links to a specific user. Users can truly own and meanwhile interoperate their
data between apps. MetalD builds the foundation for high-performance web3 applications
with simplified procedures and lower costs.

e Layer-1 UTXO-based Smart Contract

MVC is the first blockchain to support Layer-1 Turing-completed smart contracts based on
the UTXO model. It can achieve the full logic of EVM but with high performance and
extremely low transaction fees, thanks to the advantages of the UTXO model.

MVC Design Goal

Web3 is the next generation of blockchain-based Internet that satisfies everyone’s
expectations for the Metaverse. It is the prerequisite of Metaverse and will be successful only
if it can be used by massive users simultaneously, efficiently, and economically. Undoubtedly,
the underlying public blockchain must be top-performing to meet the various needs. In
addition to the high performance, built-in DID, and Layer-1 smart contract, MVC is equipped
with the following features that satisfy billions of potential users.

e Proof of Work consensus and UTXO data model

e Unlimited scaling

e Fee decrease mechanism with the growth of users

e Zero confirmation of transactions

e Unity of data storage, smart contract execution and transaction in one chain

e New MetaTXID solution that solves the tracking problem of the UTXO model
e Built-in distributed identity protocol MetalD

e Layer-1 smart contract MetaContract

About MetaTXID

MVC Adopts a New Transaction Identifying Method,called "MetaTXID." It Is the Core
Technology that Differentiates MVC from Other UTXO Public Blockchains.

Introduction

MetaTXID is a special transaction identifier generated by a hierarchical hash algorithm
during the data uploading on-chain.

Its hierarchical hash calculation on data segments can be conducted without altering the
original data set and transmission format. Therefore, transaction data on different hierarchies
can be pruned separately without interfering with the hash verification of other parts of the
data. In short, transaction identifiers can be calculated with the hash value of the pruned data
and other un-pruned data.

The same prunable data based on the same hash pointer in different transactions can be
collectively used. Thereby data can be reused, and the efficiency of data storage and transfer
will be significantly improved.

Significance of MetaTXID

The MetaTXID solution proposes an on-chain method that can prune the data in the
transaction hierarchically, which solves the inefficiency in data reuse in existing blockchains.
Essentially, it makes the Layer 1 smart contracts to deploy on pure UTXO models possible
without compromising its parallel capabilities.

In the existing blockchain technology, the transaction ID (TXID) is generated through hash
calculation of the entire piece of data, which leads to redundant data reception during
transaction verification by nodes or contracts using a hash algorithm. This method
unnecessarily increases the cost of data storage, transfer, and reuse, meanwhile bringing a
burden to the user experience.

In order to tackle the problem of inefficiency of intra-transaction data reuse in current
blockchain technology, MetaTXID proposed an innovative on-chain method of pruning the
Intra-transaction data hierarchically.

In particular, when applying MetaTXID transaction identifiers to the UTXO Smart Contract,
the data size required in the verification process can be significantly reduced since the
irrelevant data can be pruned during the smart contract verification on the targeted data. This

is an more elegant solution for data traceability and a solution for Layerl smart contract on
the UTXO blockchain.

Technical Mechanism

Under the UTXO model, the relationship of blockchain transaction data is shown in the
following figure:

T™X A

Transactions input/output can

input 1 output 1 contain a large size of data, such
as in MB level.

input mA output nA

X C
Tx B input 1 output 1
input 1 output 1 input 2

input mB output nB

Because a large number of transactions in the UTXO model can be validated concurrently,
and a single block already has a transmission capacity of GB level, a single transaction can
contain MB-level data in fact.

Even though large blocks allow extremely low-fee transactions, users and developers need to
minimize the data volume as much as possible. As shown in the figure above, transaction C
will refer to some output data in transactions A and B without considering other parts of the
data.

When the Simplified Payment Verification (SPV) lightweight nodes are implemented
correctly and efficiently, irrelevant transactions in transactions A and B need to be deleted,
and the verifiability of the required nA and nB data needs to be ensured at the same time. It
means that the pruned data still belongs to transaction A and transaction B and those data
should be included in the TXID calculation with their hash value, which is concluded as the

MetaTXID hierarchical data pruning calculation. Based on this method, the data size of SPV
lightweight nodes can be significantly reduced based on the original Bitcoin design.

MetaTXID’s hierarchical data pruning model is the technological premise of the smart
contract verification between data sets of transactions A, B and C. Without the data pruning
verification, output of transaction C will contain all the data of transactions A and B, this will
dramatically increasing the gas fees on UTXO model blockchains and cause exponential
growth of data size when the blocks are continuously mined. The MetaTXID method is an
elegant solution to the UTXO model that avoids the use of address-based technology and
impacton transaction parallel verification.

Specifically, TXID transaction format is optimized as follows:

TXID = SHA256 Encode(SHA256 Encode({
Version,
LockTime,
InputCount.toString(8Byte,Little),
OutputCount.toString(8Byte,Little),
SHA256 Encode ({
TxInl:TXID, TxIn1:VOUT, TxInl:Sequence,
TxIn2:TXID, TxIn2:VOUT, TxIn2:Sequence,

ce 9

TxInN:TXID, TxInN:VOUT, TxInN:Sequence,
$)s
SHA256 Encode ({
SHA256 Encode ({ TxInl:UnlockingScript }),
SHA256 Encode ({ TxIn2:UnlockingScript }),

ce 9

SHA256 Encode ({ TxInN:UnlockingScript }),
$)s
SHA256 Encode ({

TxOutl:Value,

SHA256 Encode (TxOutl:LockingScript),
TxOut2:Value,

SHA256 Encode (TxOut2:LockingScript),
TxOutM: Value,

SHA256 Encode (TxOutM:LockingScript),

1),
1)

MetaTXID not only satisfies the data pruning of nodes toward single UnlockingScript, but is
also capable of pruning all the input UnlockScript data while maintaining the verification
ability towards other kinds of data like LockingScript.

Features of MetaTXID

e Due to the irreversibility of TXID calculation, it can only be used in indexing TX data
since different transactions will generate different TXIDs. Therefore the calculation of
TXID is low coupling and highly independent, and the new calculation logic will be
applied only when it is needed. During the calculation, other programming
logicincluding validation of the full script of transaction data (Key & Lock) used by
minders and the process of SPV(Simplified Payment Verification), will not be
affected.

e Different TXID calculation functions will be adopted with the upgraded TX version to
identify old and new versions of transactions. Two kinds of transactions can coexist
without conflict.

e Developers do not need to alter any of the verification units to upgrade the
Application. All they need to do is to add a new TXID calculation function.

e This solution follows the prunable dataset design from Merkle Tree. It is applied to
every transaction and generates the needs of the completed data pruning. In particular,
once the Key data is verified and uploaded on-chain by miners, SPV will maintain
higher security and meanwhile allow giant Key data to be removed safely.

e This solution is essential in the path of Big-Block Blockchain development. Big
blocks require massive transactions and high efficiency of script execution. When the
script program gets larger, the storage needed (Tapes in a Turing machine) is also
getting bigger, which is similar to the phenomenon that modern computing programs
need to recycle memory to maintain the functionality of the Turing machine.
MetaTXID follows the same spirit and takes full use of the limited Turing Tape,
ensuring to recycle resources by data pruning to the full extent.

e MetaTXID enhances the transaction data ability to succeed and evolve, empowering
the bitcoin system to become a biologically evolving organism. It is similar to the
natural phenomenon that when diploid cells undergo meiosis to produce haploid
gametes (sperm and egg), part of the chromosomes is allocated to the polar bodies,
which are usually degraded.

Without discarding some chromosomes, the organism will not be able to evolve.
Therefore, the ability to dispose and recycle is a must.

For any bitcoin transaction requiring self-evolution, its mutation ability is realized by
Turing's complete computer instructions, while the recycling ability (data pruning and
storage management) is realized by its proposal.

More information of MetaTXID: https://www.microvisionchain.com/development/metatxid

https://www.microvisionchain.com/development/metatxid

About MetalD

MVC has a built-in native distributed ID protocol (DID), called “MetalD”. It is the first
Layerl DID implemented in a UTXO public blockchain. DID solution is a vital underlying
protocol for Web3 applications. Only through DID can the complexity and cost of developing
Web3 applications on MVC be remarkably reduced, which is the prerequisite of a large-scale
popularization for Web3 applications.

Introduction

MetalD is a distributed identity protocol based on blockchain that aims to facilitate the
development of Web3 applications. It is a cross-chain unified identity protocol realizing data
interoperability between applications.

MetalD has the following features:

Users can use all MetalD-based applications with only one private key;

The user's basic information and the transaction data are recorded on the nodes and
owned by themselves. Users’ data is independent of the wallets and applications,
breaking the data monopoly in Web2;

MetalD converges discrete UTXO transactions to a vertex. All Web3 data are
allocated to specific users according to their actions. Users own their data this time.

The data between different applications can be interoperable and reused, eliminating
the information barriers between Web2 mega-corporations;

The data of different protocols can be combined with each other and reused with
MetalD therefore the workload of Web3 application development is significantly
reduced;

MetalD can be deployed in multiple UTXO model blockchains. User data is
distributed in multiple blockchains and converges into a unified tree-structure dataset.

MetalD Protocol Format

The overall MetalD protocol format is:

<chainFlag><P(node)><(parentChainFlag:)txID(parent)><metal DFlag><nodeName><dat
a><encrypt><version><dataType><encoding>

The first three components point to the node position of MetalD, and the last seven
components contain the node information of MetalD. MetalD is created using the OP 0
OP_RETURN opcode in the transaction output of the UTXO model.

e The Node Positioning Components

The first three components are

<chainFlag><P(node)><(parentChainFlag:)txID(parent)>

Detail explanation:

1. <chainFlag > records which chain the data is on.

2. <P(node) > is the public key of the node

3. < parentChainFlag:) txID(parent) > is the transaction ID of the parent node.
“parentChainFlag” records which chain the parent node is on. If the information of
parentChainFlag is empty or missing, the “chainFlag” will be used to represent that
the parent node is on the same blockchain with the current node.

e The Node Information Components

The last seven components are

<metalDFlag><nodeName><data><encrypt><version><dataType><encoding>

Detail explanation:

key

value

metaidFlag

Fixed as "metaid".

nodeName

The node identification name.

data

The data content corresponds to the storage node.

encrypt

Identifies whether or not the contents of the node are encrypted. The
current version protocol supports two methods of encryption: 0
represents no encryption; 1 represents the ECIES (Elliptic Curve
Integrated Encryption Scheme), using the corresponding node's
public key to encrypt, and the private key to decrypt. The default
setting is 0, which means no encryption.

version

It is the version of the node type. Different versions represent
different formats of the data content.

dataType

This item is optional. It represents the corresponding data type. For
available data types, please refer to:

https://www.iana.org/assignments/media-types/media-types.xhtmls

The default setting is text/plain.

encoding

This item is optional. It represents the corresponding encoding format
of data. For available encoding types please refer to:
https://www.iana.org/assignments/character-sets/character-sets.xhtml

The default setting is UTF-8.

MetalD Structure

In the current version protocol, there are only two sub-nodes under the MetalD Root Node,
respectively "Info" and"Protocols".

https://www.iana.org/assignments/media-types/media-types.xhtmls
https://www.iana.org/assignments/character-sets/character-sets.xhtml

Root Node

Info Protocols

e Info is the node of users' basic information recording the user's name, profile picture
and other basic information.

e Protocols is the node of protocol recording transactions generated by users using
relevant protocols.

MetalD is fixed with the node format with Root, Info and Protocols. The names of these three
nodes can not be changed and also do not accept version update operations.

We appoint that MetalD is the TransactionID of the Root Node.

e Root Node

The Root Node is the vertex of MetalD. When a MetalD transaction is generated, NULL
TxIDparent is the vertex.

When the Root Node is constructed, the nodeName is fixed as “Root”. Here's an example of
constructing a vertex:

OP 0 OP RETURN mvc <P(node)> NULL metaid Root NULL NULL NULL NULL
NULL NULL

TxIDparent needs to be NULL in a vertex node. Root Node should be named as Root, and the
remaining contents can all be set as NULL.

The public key of MetalD Pnode is generated based on the HD solution [2] , and the Root
Node address is based on the 0/0 path of the HD solution.

e Info Node

The Info Node is the node that stores the user's basic information, and the nodeName is fixed
as “Info”.

The constructed Info Node is similar to Root Node; The only difference is that TxIDparent
needs to point to the Root Node and the nodeName should be “Info”. Here is an example of
building an Info Node:

OP 0 OP_RETURN mvc <P(node)> <parentChainFlag:Root TxID> metaid Info NULL
NULL NULL NULL NULL NULL

Basic Information about the User

In the current version protocol, the basic user information is under the Info Node. The Info
Node will constantly contain the following five sub-nodes:

e name: User name, which is not recommended for encryption. The format is fixed as
text/plain.

e avatar: User profile picture, which is not recommended to be encrypted. It is in binary
format, where the node stores the binary format of the image data.

e ecmail: User email, which is not recommended for encryption. The format is fixed as
text/plain.

e phone: User mobile phone, which is recommended for encryption. The format is fixed
as text/plain.

e Dbio: User introduction, which is not recommended for encryption. The format is fixed
as text/plain.

The structure is as follows:

Root Node

Info
name avatar | email

phone bio

The above five nodes can be set up by application developers according to different needs. It
is acceptable to not create the node or leave it NULL. However, it is recommended that when
generating a new MetalD, at least the name node should be confirmed.

The following is an example of building a “Name” node. If you want to set the user's name as
“Alice”, you need to create a MetalD transaction and point its parent node to the Info node,
then set the nodeName as “name” and the data as “Alice”:

OP_0 OP_RETURN mvc <P(node)> <txID(Info)> metaid name Alice 0 1 NULL NULL

The Avatar node stores the user's profile picture in a fixed binary format. The structure can be
referred as below:

OP 0 OP_RETURN mvc <P(node)> <txID(Info)> metaid avatar <IMAGE BUFFER> 0 1
image/png binary

Other nodes can be built in a similar way. Please note that some information, such as the
phone node, should be encrypted by setting the Encrypt value as 1 and using the ECIES
method that encrypts the relevant characters with the public key. The encrypted information
can only be decrypted by the user using the corresponding private key.

e Protocols Node

The Protocols Node records user transactions using a variety of third-party Protocols. The
sub-node under the Protocols Node is a third-party Protocol Node, whose nodeName should

be the protocol name. The sub-nodes under the Protocol Node are the specific transactions
generated by the user using the protocol. The structure is as follows:

Root Node

e

Protocols |

~\ AR

#Protocol 1 #Protocol 2

-

#Protocol 3

J

Since the Protocols are permissionless, any application developers can build their own
protocols. Therefore, the number of sub-nodes under Protocols is unlimited, and the structure
under each Protocol is determined by the creator/application developer. However, it is
necessary to ensure that the identity of Protocol Nodes is unique.

MetalD’s Privacy Model

The privacy model of the protocol is developed by the protocol creator/application developer.
If users do not want their data to be public, it can be set as follows:

e Set the Encrypt value of the node as 1. It makes the user's data only visible to
themselves.

e The data encryption of this protocol is implemented in the way of ECDH (Elliptic
Curve Diffie-Hellman Key Exchange). Data is only visible to users and application
developers; meanwhile, users can authorize third parties to access their data and the
application developers to do so.

Since MetalD is an open-source protocol, all applications can join the MetalD ecosystem
without permission. Meanwhile, data itself can be encrypted but its structure can be
transparent simultaneously. For those users who do not want any of the interrelation of their
data to be uncovered, MetalD provides the Anonymous Node solution.

Via bridge nodes, the protocol can relate one dataset to another; each dataset belongs to a
different MetalD or different organizations. This allows users to use Anonymous Nodes or
MetalD Protocol Nodes respectively.

Root Node

Protocols

#Protocol 2 #Protocol 3

{ #ProtocolLink

{#Link1 } | #Link2 J }

8

\ 4 \ 4
{ #0OtherMetalD l { #0OtherData 1

More information about MetalD: https://www.microvisionchain.com/development/metaid

https://www.microvisionchain.com/development/metaid

About MetaContract

Introduction

MetaContract is a contract framework based on the UTXO model of the MVC Blockchain.
Compared with the existing contracts base on the global state, it has the following
advantages:

e Scalability

Different UTXO contracts can be executed and verified parallelly in MVC nodes. It can take
full advantage of the multi-core modern computers to achieve high speed of contract
execution, which means the TPS of the MV C contract can be exceedingly high.

e Low Latency

By virtue of the MVC's zero-confirmation feature, the result of contract execution can be
returned as soon as the TX enters the mempool of the miner nodes without waiting for its
confirmation.

e Security

Due to the blockchain-dependency of UTXO contracts, the TX execution sequence of a same
contract can be guaranteed, thus making MEV (Miner Extractable Value) impossible. At the
same time, as the way UTXO contracts invoke each other is different from the one of those
contracts based on Global State, some security threat like Re-Entrancy Attack, will not occur
on MetaContract.

Parallel Verification

Since MVC implements the UTXO model, the smart contract execution result is in the
transaction output when nodes receive transaction requirements.

Specifically, nodes only need to verify the correctness of the result, rather than finishing the
completed calculation, which indicates that we can proceed with computation off-chain for
some computationally intensive contracts and only validate the results on-chain.

Meanwhile, seeing that the virtual machine in the MVC node only needs to execute the
validation (read-only operation), there is no side effect (writable operation) for all contract
operation, so the validation of the contract in the node can be run in parallel. As shown
below, the MVC node can run multiple VM simultaneously to validate different transactions,
and takes advantage of the multi-core performance of modern computers.

> (Input Output
contract1

output1

\ /

Tx_1

VM_1

> @put Output\

contractN
outputN

\ /

Tx_N

VM_N

Zero-Confirmation Security

Since the MVC node's principle for TX sequence follows the First Seen Rule, which is as
long as the transaction meets the minimum fee requirement, it will enter the mempool of the
node and wait to be bundled in the next block without being replaced by a higher fee
transaction. If a later transaction with the same UTXO spending arrives while the first
transaction is unconfirmed, it will be verified as illegal by the node. Example:

Input OQutput

£
=

T\
Tx2 \\

\\Reject
\

Input Output

m

Tx1

Mempool

Transaction 1 is accepted first into the mempool, and transaction 2 then arrives. TX2 and
TX1 use the same UTXO1 as one of their inputs. Since TX1 arrives at the node's mempool
earlier than TX2, TX2 is rejected by the node based on the First Seen Rule.

In a practical scenario, we can guarantee zero-confirmation security as long as the contract
transaction can be broadcast to most of the mining pool nodes.

On the other hand, we consider the worst situation, when a malicious double spending attack
happens and the transaction is bundled in a block by the mining pool. Tx2 in the above figure
is included in a block by the mining pool, resulting in Tx1 being abandoned by the node. In
this case, it will only lead to the Tx1 operation to be canceled. In the swap practice, the
cancellation will cause the swap to roll back the transaction, and the user's assets will be
returned to their original address with no loss. For general types of transactions, users need
to decide whether to wait for confirmation based on the value of their orders. If it is a
relatively large asset transfer, waiting for confirmation is a safer approach. But for the vast
majority of scenarios, zero confirmation is safe enough. Users can choose their security
strategy flexibly.

The Globally Unique ID

In the smart contract based on a global state like those in ETH, there are unique global-state
addresses to identify every smart contract, and a third party can find the corresponding
contract through the address and interact with it. On the contrary, there is no global state in
MVC, so all state data is stored under UTXO. The UTXO-based contract will generate an
entirely new contract after a single execution, so it requires a new method to confirm the
contract ID, enabling third parties to safely find the corresponding contract and interact with
it.

e Contract ID

Each contract is created with a unique input, combining which with the code hash of the
contract is the input ID for the contract.

Input Output
[O

utxo1

contract1

=
- /

Tx

As shown in the figure above, UTXO1 has a unique identifier, TXID1 + Outputlndex1, and
Contractl is the newly created contract. By combining the identifier of UTXO1 with the
contract code of Contractl, the ID of Contractl is created. In practice, the hash (TXID1 +
OutputIndex 1) + codeHash will be generally used as the ID.

This is the logic of contract ID generation. For fungible and non-fungible tokens (FT or NFT
), there are some additional constraints on this basis due to special requirements (minting).

e Contract’s Back-to-genesis Problem

Using the solution to the back-to-genesis problem proposed by sCrypt, we can effectively
validate a contract's ID to prevent others from forging the same contract ID.

In short, to prevent contract forgery in MVC, the validation towards TX1's parent transaction
TX2, and TX2's parent transaction TX3 are required. The validation includes the ID and
Code of the contract. The definition of parent transactions is that if the input data of TX1 uses
the output of TX2, TX2 is considered as the parent transaction of TX1.

Tx3 Tx2 Tx1

verify—

verify

As shown in the figure above, TX1 needs to validate its parent transaction TX2 and
grandparent transaction TX3 to check whether or not the contract code and data are consistent
with itself.

e Data Expansion

During the verification, TX1 needs to obtain the transaction data of TX2 and TX3, which will
lead to the size swelling of TX1’s transaction data. To prevent the accumulation of TX1’s
transaction data, MVC implements MetaTxID to hash the transaction input data. As a result,
the data needed for this verification is always kept at a small constant number of size, which
prevents the infinite expansion of the transaction data.

Contracts Composability

The composability of different UTXO contracts can be achieved by validating the contract
code and data differently.

The contract in MVC consists of two parts, Code and Data, which are separated by the
OP_RETURN operator. The part of Code records the execution logic of the contract, and the
part of Data carries the newest state data of the contract.

For a contract, we only need to confirm the execution logic of the contract and its current
state to confirm the functionality of the current contract.

Therefore, in the same TX, we can add multiple contracts to the input and read its own TX
data, thus to obtain the TX’s other input contract code and data and identify the ID of the
contract. Based on different contracts, we implement different logic to achieve the
combination.

ﬂ nput Output\

EEE—

contract1

contract1

contract2

-
C—

contract3

Tx

More information about MetaContract:
https://www.microvisionchain.com/development/metacontract

https://www.microvisionchain.com/development/metacontract

MVC Mining Economy

Miners are providers and guardians of hash power, validators of transactions, and as well as
the executor of MVC smart contracts. They are key roles to MVC’s decentralization and
security. They are also responsible for validating every transaction and smart contract, and
play a part in the data storage on-chain. Therefore, they are in a crucial position in the MVC
ecosystem.

The MVC network is open and permissionless to miners around the world. Its Mining
economy is coherent to that of bitcoin, which means all the bitcoin miners can mine in MVC
blockchain directly.

MVC Block Generation

Block Time: About Every 10 minutes
Difficulty Adjustment Algorithm:DAA
Mining Algorithm:SHA-256 (BTC\BCH Compatible)

Block Size Limit: Initial Limit 4G (Scale Dynamically)

Block Rewards

In MVC, the block reward is an incentive for early miners' investment when there are less
applications and users. This subsidy will be reduced over time with the flourishing of the
ecosystem. In MVC's mining economic model, a majority of the later miners' income shall be
transaction fees in the future, rather than the block rewards.

Transaction Fee

In addition to the block rewards obtained from the MVC mining competition, miners can
receive fees for validating and confirming transactions. The fee is linked to the data size of
the transaction. The larger the data size of the transaction is, the higher fee will be.

MVC aims to carry massive Web3 applications and users. Therefore each block will bring
substantial transaction fees to miners in the future even though the average transaction fee is
less than $0.01. With the growth of MVC ecology, the transaction fee of each block will
surpass the block rewards, becoming miners' main source of income.

Conclusion

In short, MVC is a sufficiently decentralized blockchain with the same level of security as
Bitcoin. With innovations including MetaTXID, MetalD, and MetaContract, MVC is taking
the advantage of the POW + UTXO model.

We envision that it will be an unlimited scaling blockchain by pruning the data efficiently and
elegantly;

We envision that it will bethe blockchain infrastructure for hundreds of thousands Web3
applications;

We envision that it will be the smart contract platform to execute practical, turing-completed
smart contracts of any kind..

More importantly, MVC is capable of achieving all these innovations with extremely low fees
given the billions of users adoption.

It is the reason why MVC will be the best blockchain to satisfy massive future Web3
applications for global users.

Reference

Satoshi Nakamoto (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf

Wenshuai Zhang, Jing Li (2021). Method and system for hierarchically cutting data in
blockchain transaction, and storage medium. The University of Science and Technology of
China USTC.

https://patents.google.com/patent/CN113360578A/zh?0q=202110682927+.8
Xin Yu Feng, Yu Wang, Qi Ming, He (2022). MetalD v.1.1 Protocol Documentation.

https://www.metaid.io/protocol.html

Jiang Jie, Gu Lu (2021). Sensible Contract, A Feature-Recognition Based
Backward-Traceable and Collaborative Contract Model.

https://sensiblecontract.org/files/sensible-contract-v0.2.0-en.pdf

https://bitcoin.org/bitcoin.pdf
https://patents.google.com/patent/CN113360578A/zh?oq=202110682927+.8
https://www.metaid.io/protocol.html
https://sensiblecontract.org/files/sensible-contract-v0.2.0-en.pdf

